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ABSTRACT 
 
The reliability of ancient DNA (aDNA) authentication depends on detecting characteristic damage 
patterns, particularly cytosine deamination at fragment ends. However, in ancient metagenomic 
studies, sequence divergence between aDNA reads and available reference genomes may obscure 
such damage signals. We systematically evaluated how reference genome divergence, read count, read 
length, and damage levels affect aDNA damage profiles using both empirical datasets and controlled 
simulations. Using ancient Yersinia pestis and Hepatitis B virus data, we show that mapping to 
divergent reference genomes significantly reduces the detectability and intensity of characteristic 
damage patterns, particularly at low read counts. Simulations further revealed that reference genome 
identity is the strongest predictor of damage intensity, while read count primarily influences damage 
stochasticity. We introduce a correction matrix that adjusts C-to-T damage profiles for reference 
divergence, improving damage signal recovery. Our findings highlight methodological considerations 
for authenticating aDNA in metagenomic contexts, particularly when closely related reference 
genomes are unavailable. 
 
 

INTRODUCTION 
 
Ancient DNA can offer valuable insights into past environments; however, reliably distinguishing 
authentic ancient molecules from modern contaminants is critical for accurate reconstructions. After 
an organism dies, DNA repair mechanisms stop, and the DNA gradually fragments, forming 
single-stranded overhangs at the molecule ends. These overhangs expose cytosines to environmental 
damage, particularly deamination, which converts cytosine to uracil. During sequencing library 
amplification, these uracils are misread as thymines, resulting in characteristic damage patterns, most 
notably an increase in cytosine-to-thymine (C-to-T) substitutions at the ends of DNA fragments 
(Briggs et al. 2007) (Bokelmann, Glocke, and Meyer 2020). A key authentication method in ancient 
DNA is thus to show the presence of elevated C to T deamination patterns (and the complementary G 
to A) at the sequence read ends, which when plotted show a characteristic “smiley” pattern.  

However, aside from biological variation, factors such as genome coverage, and the amount of 
damage present in the DNA fragments have been shown to influence ancient DNA authentication 
(Borry et al. 2021). Typically, ancient DNA damage patterns are measured by aligning reads to a 
reference genome from the same or a closely related species. Yet, with the rise of microbial and viral 
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inference studies from ancient materials such as dental calculus and sediments, researchers commonly 
encounter DNA from organisms that lack a reference genome (Kjær et al. 2022; Fernandez-Guerra et 
al. 2023). In these cases, reads are aligned to a phylogenetically close relative with a reference 
available in genomic databases, often resulting in substantial sequence divergence between the 
ancients reads and the used reference genome. Moreover, the analysis of deep-time sequence data 
from microorganisms over a million years old can result in substantial sequence divergence even 
when a reference for the modern species is available (Guinet et al. 2025, Kjaer et al 2022). This large 
number of biological substitutions to the reference, complicates the estimation of C-to-T damage 
rates, as the distinct damage signal can become overwhelmed by the high overall substitution rate. 
Furthermore, ancient metagenomic studies often recover only a small number of sequence reads for 
the species of interest, further reducing the statistical power to accurately estimate damage rates. 
Finally, aligning the typically short ancient DNA reads to a divergent reference genome introduces 
mapping biases, which become more pronounced with increasing reference divergence (Dolenz et al. 
2024). The combination of these factors may prevent the detection of characteristic ancient DNA 
damage patterns, even if the reads originate from authentic ancient DNA. With the increasing number 
of ancient metagenomic studies, a systematic assessment of how reference genome divergence, read 
count and read length quantitatively affect ancient DNA damage estimates enhances our 
understanding of expected damage patterns across datasets and supports more robust downstream 
authentication methods. In this study, we employ an extensive set of simulated and empirical 
microbial and viral paleogenomic datasets to systematically investigate the impact of key factors, 
including read length, divergence to reference genome, damage levels and reads depth, on the 
characterization of aDNA damage patterns.  

RESULTS 
To assess how the aforementioned variables influence DNA damage profiles, we first analyzed 
ancient sequence data from two organisms: 222,117,414 sequence reads previously obtained from a 
1360 year old Yersinia pestis (Namouchi et al. 2018) and 16,454 sequence reads from a 2440 year old 
Hepatitis B virus genotype B (HBV-B) (Sun et al. 2024). We aligned this data to their respective 
modern reference genomes, as well as a set of references from divergent but related species/strains. 
While both these samples show a clear signal of ancient DNA when aligned to their respective 
references, subsampling to lower read numbers introduces high stochasticity (Fig. 1 and Fig. 2). 
Nonetheless, when mapping Y. pestis and HBV-B to their respective reference genomes, even a 
modest number of reads (n = 500) was sufficient to produce the characteristic "smiley" damage 
profile, with a clear increase of C-to-T mismatches at the ends of reads (Fig. 1 and Fig. 2). Even at 
only 100 reads, DNA damage can be detected, albeit with high stochasticity (Fig. 1). Conversely, 
when mapping the sample reads to distant reference assemblies such as Y. pestis mapped to 
Escherichia coli (sequence divergence = 6.3%) or HBV-B to Woolly Monkey Hepatitis B virus 
(sequence divergence = 7.9%) a strong effect of reference genome divergence on damage estimates is 
detected. In both cases, 100 reads are insufficient to detect a damage pattern, and even with 500 
aligned reads, the damage signal is highly stochastic and difficult to discern from random noise (Fig. 
1 and Fig. 2).  
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Figure 1. A - Observed damage plots for ancient Yersinia pestis reads mapped to increasingly divergent genome 
assemblies with different numbers of reads. Top row (Blue taxa) represents reads mapped to the reference assembly 
Yersinia pestis, middle row (red) to the distantly related Yersinia bercovieri assembly and bottom row (green) to Escherichia 
coli. B - Observed damage plots of Hepatitis B virus reads mapped to increasingly divergent genome assemblies with 
different numbers of reads. Top row (Blue taxa) represents reads mapped to the reference assembly Hepatitis B virus, 
middle row (red) to another distantly related Hepatitis B virus from the group H and bottom row (green) to the Woolly 
Monkey Hepatitis B virus. Phylogenies were built with Iqtree2 based on the alignment of the assemblies of the reference 
genome of each taxa using Sibeliaz. Confidence scores (aLRT%/ultra-bootstrap support%) are shown at each node. 
Branch-length scale is shown at the bottom of the phylogeny. Damage plots were made using DamageProfiler.  
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To obtain further insights into the variables affecting these DNA damage signals, we designed a 
controlled in silico experiment to systematically assess the effects of read count and reference genome 
divergence. We also incorporated read length variables and different levels of DNA damage in the 
simulated sequence data as well as using different algorithms for read mapping. In these simulations, 
the Y. pestis modern reference (GCF_000222975.1) was used to simulate a wide range of parameters 
(see Materials and Methods). First, in 73.3% of the simulations we detected a significant difference 
(Wilcoxon test) between the damage curves produced by the most commonly used mapping tools for 
ancient DNA; Bowtie2 and BWA-aln. Along the entire read length, BWA-aln alignments showed a 
higher C-to-T mismatch frequency compared to Bowtie2 aligned reads (FigS3). We used the software 
Pydamage, which employs a likelihood ratio test to discriminate between ancient and modern 
contaminant reads to estimate the strength of aDNA damage signals among all the aligned reads. In 
75.3% of the simulations a P-value < 0.05 was obtained for both the Bowtie2 and BWA-aln 
alignment. Additionally, 7.5% of the simulations showed a significant DNA damaged pattern in the 
Bowtie2 alignments but not the BWA-aln alignments, whereas the opposite scenario occurred in only 
2.5% of the cases, finally in 14.7% of simulations, both analyses did not show any significant damage. 
These results may be explained by the observations that Bowtie2 was overall more stringent than 
BWA-aln. This is supported with BWA showing higher average mismatches than Bowtie2 (mean 
difference = 0.417, 95% CI: [0.371, 0.463], p < 0.001). This suggests that using Bowtie2 settings can 
enhance the recovery of expected damage patterns. For the remaining analysis of this study, we thus 
opted to use only Bowtie2 alignments. 

We systematically evaluated the impact of read count, reference genome divergence, and damage 
level on the p-values obtained from Pydamage. Even though DNA damage was included in all our 
simulations, when testing for the authenticity of ancient DNA, the p-values for were often 
non-significant when the number of reads or the level of damage was low (FigS8), consistent with 
previous findings ((Borry et al. 2021; Briggs et al. 2010; van der Valk et al. 2021)). We demonstrate 
that as the reads diverge further from the used reference genome, the number of simulations yielding 
non-significant p-values increases markedly (FigS8). 

To quantify the change in the level of estimated ancient DNA damage in a systematic way, we here 
established two metrics: "damage level" and "damage stochasticity." Damage stochasticity 
assesses the level of noise in the C-to-T mismatch frequency curve as the average divergence from the 
simulation values for each base in the read (Fig. 2A), while Damage level measures the overall 
amount of DNA damage, calculated as the sum of the C-to-T substitution rate at the first and last 3 
bases of the sequencing reads minus the average C-to-T substitution rate across all other bases in the 
read (Fig. 2B). 
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Figure 2.Schematic overview of the simulation pipeline and metrics used to quantify damage profile stochasticity and 
intensity. (A) - For the simulated data, we first generate 1,000,000 reads from the Yersinia pestis reference assembly using 
NGSNGS, applying different levels of damage ranging from 1% to 30%. This percentage represents the maximum C-to-T 
mismatch rate at the first position of the reads. Additionally, we simulate reads with varying lengths, uniformly distributed 
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between 20–49 bp, 50-69bp and 70–89 bp. To mimic genome divergence, mutations are introduced into the reads. This is 
achieved by calculating a mutation matrix derived from sequence alignments between several Yersinia species genomes. The 
simulated divergence ranges from 93.8% to 99.6% (including the simulated DNA damage mutations). The simulated reads 
are then mapped to the Yersinia pestis reference genome using both Bowtie2 and BWA-aln. To estimate the effect of read 
depth, we downsampled the mapped reads in the BAM files, ranging from 100 to 1,000,000 reads. Finally, DNA damage 
assessment is performed using Amber, DamageProfiler, and PyDamage, three complementary tools that together provide a 
comprehensive analysis of DNA damage. (B) The red curve illustrates the observed damage profile when up to 1 million 
reads are mapped to a given reference genome. The green curve represents a profile obtained under different parameters and 
with fewer mapped reads. The C-to-T difference metric is calculated as the sum of absolute differences at each position in 
the damage profile. Higher values indicate greater deviation of the green curve from the red curve, reflecting increased 
stochasticity. (C) The red and green curves represent distinct damage patterns, with the green curve corresponding to reads 
mapped to a distant reference genome with 94.7% identity, and the red curve to reads mapped to the identical reference 
genome (100% identity). To compare damage intensity at the read edges, we sum the C to T mismatch frequencies at the first 
three positions of each profile. To account for the overall higher mismatch rate in the red curve due to larger divergence to 
the reference , we apply a correction by subtracting the average mismatch frequency of all other mismatch types from the 
total sum.  

Damage intensity patterns are influenced by assembly divergence 

When simulating 20% DNA damage (i.e. on average 20% of reads have damage at the first base), we 
observe a decrease in the detected damage as reads are mapped to increasingly divergent reference 
genomes. For example, with a reference genome diverging by 5%, the observed damage is reduced by 
28% (i.e. from 20% to 14.4% at the first base) (Fig. 3A). When mapping to a highly divergent 
reference with 6.4% sequence divergence, the observed damage decreases by 59.5% (Fig. 3A). . he 
number of mapped reads had only a minor effect on the observed damage intensity, except when very 
few reads were mapped (e.g., n = 100). For example, mapping 5,000 reads resulted in a slight 
decrease in damage of just 0.34%, whereas mapping only 100 reads led to a more pronounced 
reduction of 1.48% (Fig. 3B). Finally, damage stochasticity seems more strongly influenced by the 
number of mapped reads; a low read count leads to greater variability in the damage profile (Fig. 3B). 
This effect is not observed when reads are mapped to distant reference assemblies (Fig. 3A). 

 
Figure 3. C to T mismatch frequency as a function of reference divergence and read numbers. A - Each curve shows 
the average C to T mismatch frequency at each position across 10,000 reads mapped the reference of increasingly lower 
sequence identity. B - Each curve represents the average C to T mismatch frequency at each position across all reads mapped 
to the same (Yersinia pestis) reference genome as the reads (i.e. 100% identity when excluding DNA damage). The dataset 
used in the A plot corresponds to 10,000 reads mapped. In both plots, simulated read lengths ranged from 50-59bp and 
simulated damage of 20%.  

6 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2025. ; https://doi.org/10.1101/2025.07.16.665190doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.16.665190
http://creativecommons.org/licenses/by/4.0/


When comparing different levels of aDNA damage, ranging from 5% to 30%, we observe only a 
minor effect of read count on the damage estimates (Fig4-A & FigS4). However, damage estimates 
are highly influenced by the sequence divergence of the used reference genomes (Fig4-A & FigS4), 
with this effect being more pronounced at higher damage levels. At low damage levels, when reads 
exhibit only 5% damage, the difference in estimates across different reference genomes is negligible 
(Fig4-A & FigS4). 

 

Figure 4. DNA damage estimates and stochasticity depending on the mapping conditions A - Boxplots showing the 
distribution of damage levels across different read depths (nread​) and reference genome percentage identities for varying 
damage levels. B - Boxplots showing the distribution of the damage stochasticity across different read depths (nread) and 
reference genome percentage identities for varying damage levels. DNA damage and stochasticity were calculated as shown 
in Fig 2-A&B.  

To statistically test these observations further, we built a regression model to determine which of the 
variables, read length, damage level, reference divergence, and the number of reads explain the 
variation in damage intensity. We used the linear regression approach (Damage intensity ~ 
Damage_level + Nb_reads + Ref_percID + Read_length), implemented in Python using the 
statsmodels library and fitted the model to all the inferred values from the simulation data. The 
number of reads did not present a significant relationship with damage intensity (all p > 0.10) 
(Table1). The reference percentage identity variables showed the strongest correlation with damage 
intensity. For instance, the coefficients for 94%ID and 99.6%ID are respectively 0.043 and 0.129 
(both p < 0.00001) (Table1), indicating that a close sequence identity between the reads and the 
reference genome is associated with a significant increase of the observed damage intensity. Finally, 
the read length variable exhibits mixed effects. Shorter reads such as 20-49 bp and 50-69 bp slightly 
reduced damage intensity (coefficient = -0.012 and -0.008 respectively, p < 0.00001)(Table1), while 
longer reads (70-89 bp) did no not have a significant effect, suggesting that read length plays a 
nuanced role in determining damage intensity, with short and long reads affecting it in different ways. 
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Table1. Coefficients from ordinary least squares (OLS) regression predicting the effect of 
several predictors on the damage intensity. The table reports the estimated coefficient (coef), 
standard error (Std. Error), t-value, p-value, and the 95% confidence interval (CI) bounds.  

2. stochasticity patterns are primarily influenced by the number of reads  

Across all damage levels (from 5% to 30%) we observe a clear correlation between the number of 
mapped reads and the stochasticity of the damage curves. Specifically, greater stochasticity is 
observed with fewer mapped reads (Fig. 4-B & FigS7). This trend remains consistent across varying 
degrees of damage. To a lesser extent, we also observe a slight reduction in damage stochasticity 
when reads are mapped to closely related reference genomes. and this effect appears to be more 
pronounced with a small number of reads (Fig. 4-B & FigS7). 

When statistically testing these observations (Damage stochasticity ~ Damage_level + Nb_reads + 
Ref_percID + Read_length)), our analysis shows that damage levels are significantly associated with 
stochasticity of the damage curve. As the damage level increases, the observed difference in 
stochasticity becomes more pronounced. For example, at higher damage levels (such as 30%), the 
coefficient reaches 0.07 (p < 0.00001), while at lower damage levels (like 5%), the coefficient drops 
to 0.02 (p = 0.001) (Table2). The number of mapped reads is the main factor explaining damage 
stochasticity. As the number of reads increases, the damage stochasticity decreases. This is evident 
from the coefficients for different read categories, such as nread=1000 (-0.66, p < 0.00001) and 
nread=1,000,000 (-0.92, p < 0.00001)(Table2), showing that larger sequence datasets reduce the 
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 coef std err t P>|t| [0.025 0.975] 

Intercept -0.0191 0.003 -5.656 0.000 -0.026 -0.012 

Damage[1%] 0.0116 0.004 2.929 0.003 0.004 0.019 

Damage[5%] 0.0608 0.004 15.357 0.000 0.053 0.069 

Damage[10%] 0.1208 0.004 30.329 0.000 0.113 0.129 

Damage[15%] 0.1791 0.004 45.113 0.000 0.171 0.187 

Damage[20%] 0.2316 0.004 58.306 0.000 0.224 0.239 

Damage[25%] 0.2771 0.004 69.385 0.000 0.269 0.285 

Damage[30%] 0.3317 0.004 83.037 0.000 0.324 0.339 

nread[500] 0.0003 0.004 0.072 0.942 -0.007 0.008 

nread[1000] -0.0028 0.004 -0.749 0.454 -0.010 0.005 

nread[5000] 0.0002 0.004 0.044 0.965 -0.007 0.007 

nread[10000] -0.0001 0.004 -0.037 0.971 -0.007 0.007 

nread[100000] 0.0002 0.004 0.059 0.953 -0.007 0.008 

nread[1000000] 0.0002 0.004 0.062 0.950 -0.007 0.008 

Ref_percID[94.0%] 0.0434 0.004 9.967 0.000 0.035 0.052 

Ref_percID[94.19%] 0.0356 0.004 8.193 0.000 0.027 0.044 

Ref_percID[94.45%] 0.0454 0.004 10.441 0.000 0.037 0.054 

Ref_percID[94.85%] 0.0582 0.004 13.380 0.000 0.050 0.067 

Ref_percID[95.29%] 0.0683 0.004 15.689 0.000 0.060 0.077 

Ref_percID[96.53%] 0.1029 0.004 25.984 0.000 0.095 0.111 

Ref_percID[97.79%] 0.1242 0.004 28.551 0.000 0.116 0.133 

Ref_percID[99.57%] 0.1296 0.004 29.776 0.000 0.121 0.138 

Read_Length[50-69bp] -0.0079 0.002 -4.189 0.000 -0.012 -0.004 

Read_Length[70-89bp] 0.0012 0.001 1.138 0.255 -0.001 0.003 

Read_Length[20-49bp] -0.0124 0.002 -6.573 0.000 -0.016 -0.009 
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magnitude of the observed differences in substitutions. There is also a notable decrease in 
stochasticity as the reference identity increases. For example, at 99.6% identity, the coefficient is -0.15 
(p < 0.00001)(Table2), indicating that higher alignment precision with the reference genome results in 
a smaller stochasticity. At lower identity levels (e.g., 94 %ID), the effect is positive, with a coefficient 
of 0.02 (p < 0.00001)(Table2), showing that lower reference identity corresponds to larger 
stochasticity. Read length also significantly impacts the damage stochasticity. Shorter reads (20-49 bp) 
increase stochasticity (coefficient = 0.24, p < 0.00001), whereas longer reads (70-89 bp) show a 
substantial decrease (coefficient = 0.14, p < 0.00001)(Table2).  

 coef std err t P>|t| [0.025 0.975] 

Intercept 0.6500 0.005 124.716 0.000 0.640 0.660 

Damage[1%] 0.0053 0.006 0.870 0.384 -0.007 0.017 

Damage[5%] 0.0216 0.006 3.544 0.000 0.010 0.034 

Damage[10%] 0.0357 0.006 5.821 0.000 0.024 0.048 

Damage[15%] 0.0454 0.006 7.412 0.000 0.033 0.057 

Damage[20%] 0.0512 0.006 8.355 0.000 0.039 0.063 

Damage[25%] 0.0596 0.006 9.670 0.000 0.047 0.072 

Damage[30%] 0.0698 0.006 11.328 0.000 0.058 0.082 

nread[500] -0.5316 0.006 -92.427 0.000 -0.543 -0.520 

nread[1000] -0.6562 0.006 -114.082 0.000 -0.667 -0.645 

nread[5000] -0.8222 0.006 -142.931 0.000 -0.833 -0.811 

nread[10000] -0.8615 0.006 -149.768 0.000 -0.873 -0.850 

nread[100000] -0.9240 0.006 -160.585 0.000 -0.935 -0.913 

nread[1000000] -0.9423 0.006 -163.818 0.000 -0.954 -0.931 

Ref_percID[94.0%] 0.0231 0.007 3.448 0.001 0.010 0.036 

Ref_percID[94.19%] 0.0386 0.007 5.748 0.000 0.025 0.052 

Ref_percID.94.45%] 0.0321 0.007 4.778 0.000 0.019 0.045 

Ref_percID[94.85%] 0.0342 0.007 5.097 0.000 0.021 0.047 

Ref_percID[95.29%] 0.0243 0.007 3.625 0.000 0.011 0.037 

Ref_percID[96.53%] -0.0065 0.006 -1.066 0.287 -0.018 0.005 

Ref_percID[97.79%] -0.0519 0.007 -7.731 0.000 -0.065 -0.039 

Ref_percID[99.57%] -0.1536 0.007 -22.883 0.000 -0.167 -0.140 

Read_Length[50-69bp 0.2707 0.003 93.018 0.000 0.265 0.276 

Read_Length[70-89bp] 0.1396 0.002 86.121 0.000 0.136 0.143 

Read_Length[20-49bp] 0.2396 0.003 82.319 0.000 0.234 0.245 

Table2. Coefficients from ordinary least squares (OLS) regression predicting the effect of 
several predictors on the damage stochasticity. The table reports the estimated coefficient (coef), 
standard error (Std. Error), t-value, p-value, and the 95% confidence interval (CI) bounds. 
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3. Correcting DNA damage estimates for reference genome divergence 
 
We show that C to T damage curves are strongly influenced by the divergence between the reference 
genome and the reads. Higher divergence increases mismatch frequencies across all mutation types 
and reduces the relative C to T damage observed at the end of the reads. This poses a challenge for 
using C-to-T damage plots to authenticate the ancient origin of microbes without a reference genome. 
Additionally, cases where the host and microbes are believed to have died simultaneously, similar 
damage patterns are often interpreted as evidence of their contemporaneity (e.g.,  (Ferrari et al. 2020; 
Philips et al. 2017; Feldman et al. 2016; Maixner et al. 2021)). One might thus use the comparison of 
damage patterns between microbes and their hosts as evidence of coexistence, on the assumption that 
similar damage profiles imply contemporaneous deposition. Our results show that DNA damage 
estimates also depend on the phylogenetic closeness of the reference genome. For these reasons, DNA 
damage patterns can typically only be compared in a relative manner and distinct DNA damage 
patterns between two samples do not necessarily indicate that they are not contemporaneous. 
However, our findings suggest that this approach is unreliable when exact reference genomes for the 
identified microbes are unavailable. Additionally, the biochemical properties of bacterial or viral DNA 
may affect their preservation differently compared to host DNA, as demonstrated in the case of 
Mycobacterium leprae versus human DNA (Schuenemann et al. 2013). 

However, we discovered that damage curve intensity changes in a predictable manner depending on 
the reference divergence, which could be used to correct the observed damage plots so that they closer 
match the true values. To achieve this, we first constructed a C-to-T mismatch frequency matrix. This 
matrix was built to correct read site-specific damage using the simulated damage profiles from 
references with over 99% identity to the reads . It includes corrected values for all damage types 
across a range of damage levels (0 -30%) and accounts for the average read identity to the reference 
genome, with a minimum threshold of 94.7%. 

This approach enables some correction to the measured damage signals by first analyzing the 
observed damage plot and reference divergence percentage. We then identify the closest matching 
curve within the matrix and apply the calculated site specific corrections (FigS1). To evaluate the 
applicability of this approach to empirical data, we conducted experiments on ancient DNA sequences 
from various organisms, including Yersinia pestis, Clostridium tetani, Salmonella enterica, and 
Phytophthora cactorum (a fungal-like plant pathogen) (FigS2). The corrected curves approached the 
true damage curves, making them more closely aligned to the true values , albeit with some variation. 
While we acknowledge these corrections can not recapitulate the exact true DNA damage, this 
approach could serve as a promising starting point for further DNA damage correction algorithms that 
can consider additional parameters besides reference divergence.  
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DISCUSSION 

This study provides insights into how reference genome divergence and read depth influence the 
observed DNA damage patterns in ancient DNA datasets. Under ideal conditions, with a high number 
of reads mapped to a closely related reference genome, DNA damage plots exhibit the characteristic 
'smiley' pattern indicative of authentic aDNA. However, such ideal conditions are often not attained in 
ancient metagenomic studies when working on non-model organisms. Microbial genomic databases 
often lack comprehensive representation, reducing the likelihood of having access to a closely related 
reference genome for many ancient microbial taxa. Consequently, researchers working with ancient 
samples frequently contend with low read counts and divergent reference genomes, which can obscure 
authentic damage patterns and potentially lead to false-negative conclusions regarding the ancient 
origin of microbial DNA. 

This challenge is even more pronounced in viral aDNA analysis. Viruses are characterized by high 
mutation rates (Gago et al. 2009), resulting in greater divergence from available reference genomes. 
Additionally, viral taxa are significantly underrepresented in genomic databases  (Kieft and 
Anantharaman 2022; Lu et al. 2025; Kim, Whon, and Bae 2013). This combination of high sequence 
divergence and poor reference representation amplifies the sensitivity of damage detection to 
alignment distance, complicating the interpretation of viral aDNA signals. Our examination of the 
Hepatitis B virus as a case study further illustrates how reference genome divergence can mask 
genuine ancient viral DNA damage patterns, highlighting that DNA damage signals should be 
interpreted in the broader context of the data. Furthermore, while smooth damage curves provide a 
clearer ancient DNA authentication, such plots generally require extensive sequencing depth and a 
closely related reference genome (Gago et al. 2009; Der Sarkissian et al. 2021). Our findings 
demonstrate that even when reads are mapped to a distant organism, a damage signal can be detected 
if enough reads are available. These results can thus guide researchers in assessing the authenticity of 
ancient DNA signals under varying data conditions. 
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Material and Methods  

In this study, we made us of both simulated data, using the Yersinia pestis genome as a reference for 
our read simulations, as well as validating our observations using empirical dataset from the public 
repositories listed in the SPAAM metadata table (Fellows Yates et al. 2021) accessible at 
https://www.spaam-community.org/AncientMetagenomeDir/#/ .  

Empirical Dataset Analysis 

In the first part of this study, we used empirical data from a bacterial and a viral system. For the 
bacterial dataset, we selected a targeted-capture ancient DNA sequence library (ENA: ERR2862147) 
from Yersinia pestis (GCF_000222975.1). We then mapped these reads against the following 
reference genomes; Yersinia bercovieri (CP124240.1-CP124241.1), and a distant outgroup 
Escherichia coli (U00096.3). Randomly downsamples subsets of the data containing 10,000, 500, and 
100 reads respectively were used to assess the effect of read number on DNA damage estimates. For 
the viral dataset, we used the targeted-capture library (GSA:CRX838871) derived from an ancient 
Hepatitis B virus (HBV) (Sun et al. 2024). HBV reads were mapped against a standard HBV reference 
(LC784057.1), two divergent HBV genotypes (from groups H (LC491577.1) and G (AB625343.1)), 
and the more distantly related Woolly Monkey Hepatitis B virus (AF046996.1). The mapping tools 
and parameters and the tools used to assess damage patterns were identical to those employed in the 
simulations described below. 

Simulations and study design 

To validate our observations from the empirical dataset, we relied on simulation to systematically 
explore a range of scenarios and assess their effect on the resulting damage patterns. Specifically, we 
simulated reads of varying lengths and damage levels, modified the number of reads mapped to the 
reference genome, and tested different degrees of sequence divergence between the simulated reads 
and the reference. This approach allowed us to evaluate how each parameter influenced the accuracy 
and detectability of damage signals. 

Our initial simulation involved selecting reads from the reference genome of Yersinia pestis 
(GCF_000222975.1) using NGSNGS v0.9.1 (Henriksen, Zhao, and Korneliussen 2023) (Fig2-A). The 
damage modeling included the following parameters:empirical misincorporation (0% damage, 1% 
damage (-m b,0.024,0.36,0.03089,0.000366", labeled as "1DOperc"), 5% damage (-m 
b,0.024,0.36,0.1545,0.00183", labeled as "5DOperc"), 10% damage (-m 
b,0.024,0.36,0.3089,0.00367", labeled as "10DOperc"), 15% damage (-m 
b,0.024,0.36,0.4634,0.0055", labeled as "15DOperc"), 20% damage (-m 
b,0.024,0.36,0.6179,0.00732", labeled as "20DOperc"), 25% damage (-m b,0.024,0.36,0.772,0.0091", 
labeled as "25DOperc"), and 30% damage (-m b,0.024,0.36,0.926,0.011", labeled as "30DOperc"). 
These parameters enabled us to incrementally model DNA damage from 0% to 30%, reflecting 
varying degrees of cytosine deamination typical in ancient DNA samples. To also capture the 
fragmentation patterns observed in ancient DNA, we included different read length distributions using 
the following parameters: 20-49 bp (-ld Uni,20,49", labeled as "ReadL20-49"), 50-69 bp (-ld 
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Uni,50,69", labeled as "ReadL50-69"), 70-89 bp (-ld Uni,70,89", labeled as "ReadL70-89"). Only 
endogenous DNA was simulated without (modern) contamination. 

To model the divergence between the reads and the reference genome, we added divergence directly 
in the simulated reads (averaging from 94% to 100% identical) using a custom python script 
(github:https://github.com/BenjaminGuinet/Impact_ref_on_Ancient_DNA_pattern/tree/main) that 
uses a mutation matrix previously trained on a multiple sequence alignment of 12 different Yersinia 
species. To align the Yersinia sequences, we utilized PanACoTA version 1.4.1 (Perrin and Rocha 
2021) to detect single-copy orthologous genes among the various species, employing default settings 
for annotation, a pangenome parameter of -i 0.7 in cluster mode 1, and a corepers parameter of -t 0.3. 
Subsequently, we used PanACoTA to conduct de novo alignment for each gene family or orthologous 
gene individually, using default alignment settings. These alignments were then merged to form a 
comprehensive alignment composed exclusively of core or persistent microbial genes within the 
genus. We then used this alignment to generate a biologically meaningful matrix to introduce 
mutations within the reads.  

To model the impact of read depth on damage profile, we randomly subsetted our simulated reads 
from 100 to 1,000,000 from the BAM files using Samtools v1.21 and shuf v8.32 (Danecek et al. 
2021). Next, for generating the damage plot information, we employed DamageProfiler v1.1 
(Neukamm, Peltzer, and Nieselt 2021) to account for all mutation types.  

Measurement of damage stochasticity  

We aimed to quantify the stochasticity in the C-to-T mismatch rate plots by comparing the C-to-T 
frequency in simulated data with data obtained from mapping up to 1 million reads (FigS2-A). This 
stochasticity is measured by calculating the sum of absolute differences in C-to-T frequencies at each 
position between the observed damage profile and an expected smooth curve. The expected curve is 
generated using a large number of reads mapped (1 million) for the same level of divergence from the 
reference genome. Higher values indicate a greater deviation from the expected curve, which means 
increasing of the stochasticity. 

Measurement of damage intensity  

Another important metric for assessing the damage profile is the intensity of the observed damage, 
especially at the read edges. To quantify damage intensity, we focus on the C to T mismatch 
frequencies at the first three positions of the reads, where damage is often most pronounced. To ensure 
an unbiased comparison between different conditions (when for instance mapping reads to different 
reference genomes), we calculate the damage intensity as the average C to T mismatch rate at the first 
three bases and subtracting the average mismatch frequency of all other mismatch types across all 
bases in the read. In this way we correct for the higher overall background substitution rate when 
aligning reads to a divergent reference.  
Statistical analysis  

To assess the influence of various factors on cytosine-to-thymine (C-to-T) substitution rates, linear 
regression models were employed using the Python statsmodels package. Two separate models were 
constructed to evaluate different dependent variables related to DNA damage patterns. 
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In the first analysis, the relationship between the damage intensity and three predictor 
variables—DNA damage level (Damage), sequencing read count (nread), and reference genome 
percent identity (Ref_percID) was examined. A linear model was defined using the formula "damage 
intensity ~ Damage + nread + Ref_percID". This model was fitted using ordinary least squares (OLS) 
regression through the ols function from the statsmodels.formula.api module. Model fitting was 
conducted and the statistical significance of each predictor variable was evaluated through the model 
summary, which provided estimates of regression coefficients, standard errors, t-values, and 
associated p-values. 

In the second analysis, a similar linear regression model was used to investigate factors affecting the 
damage stochasticity. The formula "Damage stochasticity ~ Damage + nread + Ref_percID + 
Read_Length" was specified to include an additional predictor, read length (Read_Length), alongside 
the previously mentioned variables. Prior to model fitting, the C_to_T_diff column was converted to a 
numeric format using the pd.to_numeric function with errors='coerce' to handle any non-numeric 
entries. This conversion ensures data consistency and prevents errors during model fitting. The linear 
regression was then performed using the ols function, and the model summary was generated to 
interpret the statistical contributions of each variable. 
Correction of reference bias on damage plot  
The tool we developed to apply this correction, named "Correct_damage_ref_bias.py," takes as input 
the BAM file (-b) and the matrix (-m), and outputs a plot displaying both the observed and corrected 
C-to-T damage (FigS1). To correct the C-to-T substitution rates induced by postmortem damage in 
ancient DNA (aDNA) sequences, we developed a two-step computational procedure that accounts for 
both sequence divergence and damage intensity. All computations were performed in Python using the 
pandas and numpy libraries. We began by generating a baseline correction matrix using simulated 
datasets. Specifically, we computed the average corrected C-to-T read depth under low-divergence 
conditions (Y.pestis simulated reads mapped to Y.pestis reference genomes). We selected records 
where the number of reads (nread) was equal to 1,000,000 and the average percentage sequence 
identity (Avrg_Perc_ID) exceeded 99%. These were grouped by damage level and individual C-to-T 
position along the reads, and the mean value for each group was computed. This provided a reference 
matrix representing expected damage levels in nearly error-free mapping conditions. 

In parallel, we computed the observed mean Corrected_total_C_to_T_DP for each combination of 
Avrg_Perc_ID and damage level across the entire dataset, under the same read depth (1,000,000). 
These two datasets (baseline and observed) were merged to allow direct comparison between 
observed and ideal damage rates across varying divergence levels. This generated a dense matrix 
estimating the C-to-T profile for any intermediate combination of sequence identity and damage level. 
To determine the extent of overestimation or underestimation due to mapping divergence, we 
computed the deviation of each interpolated observed value from the reference (baseline) at high 
identity. These differences were calculated separately for Observed_C>T0, Observed_C>T1, and 
Observed_C>T2 and added to the matrix as correction terms . This matrix provides a per-context and 
per-divergence correction value for adjusting postmortem C-to-T substitution estimates. The final 
correction matrix was exported as a delimited table for use in downstream post-processing and 
visualization. 
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Supplementary figures  

 

Fig S1. Observed vs. expected C→T damage plot using divergent vs. correct reference genome. As we can observe, the 
black curve represents the curve obtained when reads are mapped to a divergent reference assembly (93.6% divergence), and 
the red curve represents the new curve we estimate to be the through if the reads were mapped to the correct reference 
genome. 
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FigS2. Damage profile before and after reference-bias correction. C→T substitution frequency profiles across the first 25 
base positions in ancient DNA samples from Yersinia pestis (SRR23219988), Clostridium tetani (ERR966440), Salmonella 
enterica (SRR23219988), and Phytophthora cactorum (ERR267886). The plots display observed C→T misincorporation 
rates (black solid lines), corrected C→T frequencies after damage correction (red dashed lines), and the expected C→T 
frequencies based when reads are mapped to the correct assembly (green dashed lines), and other substitution types (grey 
solid lines).  

 

FigS3. Comparison of damage profiles between BWA and Bowtie2. The Y-axis represents the ratio of mismatch 
frequency at a given read position (x-axis) in the BWA analysis divided by the corresponding mismatch frequency in 
Bowtie2. A ratio > 1 indicates that BWA shows a higher mismatch frequency at that position compared to Bowtie2. The red 
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dashed line represents the scenario where the C to T mismatch frequency is identical in both tools. We removed from the plot 
all simulations that contained only 100 reads to reduce stochasticity.  

 

 

FigS4. Damage intensity heatmap as a function of damage percentage, read length, and reference identity percentage. 
The x-axis delineates damage percentages (0% to 30%) across read lengths of 20, 50, and 89 base pairs, while the y-axis 
represents reference identity percentages ranging from 94.56% to 99.59%, with the number of reads varying from 100 to 
1,000,000. The color scale, transitioning from blue to red, indicates the degree of damage intensity, where blue denotes lower 
damage intensity and red signifies higher damage intensity. 
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FigS5. Damage stochasticity heatmap as a function of damage percentage, read length, and reference identity 
percentage. The x-axis delineates damage percentages (0% to 30%) across read lengths of 20, 50, and 89 base pairs, while 
the y-axis represents reference identity percentages ranging from 94.56% to 99.59%, with the number of reads varying from 
100 to 1,000,000. The color scale, transitioning from blue to red, indicates the degree of damage stochasticity, where blue 
denotes lower damage stochasticity and red signifies higher damage stochasticity. 
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FigS6. Pydamage pvalues heatmap as a function of damage percentage, read length, and reference identity 
percentage. The x-axis shows damage percentages ranging from 0% to 30% for read lengths of 20, 50, and 89 base pairs. 
The y-axis represents reference identity percentages, spanning from 94.56% to 99.59%, with the number of reads varying 
between 100 and 1,000,000. The color scale transitions from orange to green, indicating the significance of p-damage. 
Orange signifies a high p-value, suggesting no significant damage, while green indicates a low p-value, denoting significant 
damage. 
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